

FOS Engineering Activities Andy Miller

16 October 1995

FOS CDR Roadmap

FOS CDR Overview

- FOS CDR goals
- Driving requirements

System Architecture

- Overview
- Features

IST

- Capabilities
- Plans

Hardware Design

- Computers
- Peripherals

Network Design

- EOC LAN
- IST Connectivity

FOS Infrastructure

- Mgt Services
- Comm Services

Segment Scenarios

- End-to-End Flow
- Subsystem Interfaces
- Building block linkage

Subsystem Design

- Detailed design
- FOS functions/tools
- Subsystem design features

RMA

- RMA allocation
- FMEA/CIL

Operations Overview

- EOC facilities
- FOT positions

Operational Scenarios

- End-to-end flow
- Operations perspective
- FOT tool usage

Development

- Release Plan
- Development approach

Testing

- Test approach
- Test organization

FOS Segment Engineering

FOS Changes Since PDR

Physical Architecture

- EOC router and EBnet router interface modified
 - Provided to both the Operational LAN and the Support LAN
- Multicast Server Added
 - ISTs may not be able to receive multicast packets

 Dependent on the campus network routers
 - Provides point-to-point reflector from EOC to ISTs for multicast data
 - Ensures that I/O performance on EOC servers is not impacted Dedicated host efficiently routes multicast packets to ISTs
- NSI provides network connectivity between EOC and ISTs
 - FOS working closely with ESDIS and instrument teams to ensure system solution is provided
 - Awaiting commitment from NSI re: network performance requirements

FOS Changes Since PDR

Recent Configuration Change Request

- PLOP-1 and PLOP-2 (Physical Layer Operations Procedure)
 - FOS performs processing of PLOP-1 and PLOP-2 instead of EDOS
 FOS adds acquisition sequence and ground header to CLTU to
 form command block
 - Provides more efficient system solution
 Provides EOC more control of the uplink
 Simplifies interface testing

ISTs Added to Efficiently Support FOS External Interfaces

- SDF and sustaining engineering (LMC, Valley Forge)
- ASTER
- FDF

AM-1 Project

- Requirements review process
 - Joint AM-1/FOS team analyzed AM-1 Ground System Requirement Document (GSRD) and FOS requirements
 - Series of meetings held between January and June to develop common understanding of how FOS addresses AM-1 spacecraft and instrument ground requirements
- Requirements review summary
 - 400 AM-1 GSRD requirements mapped directly to L4 requirements
 - 33 new Level 4 requirements added based on GSRD discussions Added requirements based on discussions with FOT: e.g., provide capability for FOT to override prerequisite state check failure
 - GSRD requirements outside current FOS baseline are handled through CCR process
 - Facility requirements traced through the EOC Facility Plan

Instrument Operations Team

- Instrument Advocates
 - Objectives

- Meetings

Prototype demonstrations and distributions (ASTER, CERES, MISR, MODIS, MOPITT)

 Demo, technical exchange with AIRS, CERES, MISR, MODIS, MOPITT

Presentations, technical exchanges with ASTER (Flagstaff, ASTER PDR)

Instrument Operations Team (cont.,)

- New requirements (examples)
 - Handle redundant CERES housekeeping telemetry
 - Calculate the command parameter for the # of scans based on predicted times of sunrise and sunset while generating CERES stored commands

AM-1 Instrument Operations Workshop

- Meeting: February 1995
- Objectives
 - Summary of open AM-1/FOS requirements issues
 Instrument teams responded to FOS requirements questionnaire
 - FOT presented FOT and IOT roles
 - AM-1 instrument teams presented how they will operate and monitor their instruments
- Results
 - Common understanding of requirements status
 - Additional insight re: FOS tools and how they can be used

AM-1 Instrument Operations Workshop

- Meeting: August 1995
- Objectives
 - Provide key FOS changes since PDR
 - FOS present approach for:
 - Delivery of IST software toolkit and updates
 Configuration Management/ File Management capabilities
 IOT Training
 - Distribute FOS screen mockups and summary table of FOS Reports
 Solicited and received feedback from IOTs
- Results
 - Common understanding of IST software CM and IST file capabilities
 - Discussion and approach to IOT, FOT, and FOS communications in upcoming project phases

Flight Operations Team

- Integrated effort between FOT and FOS development team during detailed design phase
 - FOT developed operational scenarios that describe how FOT will use FOS to perform ground operations
 - FOS development team actively supported the development and walkthroughs of the operational scenarios
 - FOT team actively supported the detailed design walkthroughs presented by the developers

Flight Operations Team (cont.,)

- Requirements and design were refined based on FOTs inputs
 - Requirements (examples)

Replay of NCC ODMs and EDOS CODAs

User defined algorithms

Custom defined reports

- Design (examples)

Trigger to initiate plots after back-orbit telemetry has been ingested

Solid State Recorder Management design

Spacecraft Activity Log Management design

Integrated Load Manager tool

Multicast

- CSMS determined technical approach to provide FOS multicast solution
- Multicast solutions evaluated
 - IGMP, RMP, and ISIS
- Multicast approach IGMP
 - Provides appropriate technical solution
 - Common interface for multicasting with EDOS
 - Low cost
- Multicast Server analysis
 - Provide multicast capability within EOC and point-to-point communication to ISTs
 - Ensures that I/O performance on EOC servers is not impacted

Hardware Vendor Selection

Determined vendor that provides best solution for EOC servers and workstations

Performance Analysis

- Network
 - Determined appropriate network architecture to support multiple missions
- Real-Time
 - Determined ability to distribute telemetry processing to User Stations and ISTs
- FMEA and Critical Items List analysis

Security

Provide end-to-end security design encompassing internal EOC security and remote IST users

Interfaces

- Evaluated the use of the ECS IST as the EOC interface with ASTER
- Defined the context in which the FOS will use the SCDO Management Subsystem (MSS) and Communication Subsystem (CSS) services
- Provided formats to FDF for each of the FDF products that will be provided to the EOC
- Supported redefinition of EDOS interface

Scheduling Architecture

- Determined approach for distributing scheduling functions between the FOT/IOT users
 - Single resource model
 - Single master resource model, multiple slaves
 - Multiple resource models

All resource models obtain data from the database Based on heritage design with 60-100 users

Analysis Request Manager Design Trade

- Provide FOT visibility into the Analysis request jobs in the system
- Enable FOT to efficiently manage Analysis request jobs
- Provide ability to utilize EOC hardware resources that are not being fully utilized
 - Analysis Farm: analysis request jobs distributed to available EOC hardware resources
 - FOT controls identification of EOC hardware resource that can be used in this pool

Development Tools

 Evaluated development tools to ensure FOS team is fully prepared for development phase (e.g., ClearCase)

AM1-19

Reuse

706-CD-002-001 Day 1

- Determined suitability of other NASA control center software and concepts
 - Adapted architecture and design from TPOCC and FOS heritage systems

Real-Time Contact Management subsystem designed adapted from TPOCC NCC real-time interface design

- Determined common software to share with Control Center Technology Interchange (CCTI) group
 - User Interface software reuse (event analyzer, room builder, dynamic page)
 - Cross-project group provides good check-and-balance re: ensuring design for reuse

CCTI projects: HST, MocStation, GlobalStar

Evaluated UPS and FORMATS for Planning and Scheduling functions

FOS COTS/GOTS

FOS team evaluated COTS/GOTS to optimally use building block components

RogueWave class libraries DCE, KFTP HPOpenView

X Windows system/Motif XRT graphs, tables, 3D Builder Xcessory HTML browser (MOSAIC) e-Mail (vendor supplied) Report browser editor (PDF) SyBase Database Xcessory, DBTools

Delphi User Planning System (UPS) RTWorks Altair IMSL

FOS COTS/GOTS

FOS team recently reviewed IMACCS and GENIE as control center building blocks

IMACCS - (Integrated Monitoring, Analysis, and Control System)

- Proof-of-concept control center built from COTS products
- Altair provides state recognition engine
 - Functions on top of RTWorks
 - Complements the procedurally-based RTWorks
 - FOS will be using both RTWorks and Altair for Decision Support

GENIE - (Generic Inferential Executor)

- Procedurally-oriented script to support contacts autonomously
- FOS team reviewed the GENIE system
 - Similar conceptually to the FOS Ground Script
- Follow-up meetings with the GENIE team have been planned
 - Identify lessons learned and potential for collaboration

FOS Standards

FOS Prototyping

Two Prototype Results Reviews were held for the FOS since PDR February 1995 PRR

- Objective
 - Develop end-to-end prototypes that integrate threads for Scheduling, Real-Time, and Off-Line functions
- Results
 - Provide demonstrations to the FOS user community that demonstrate end-to-end prototypes
 - FOS integrated CSMS MSS functions into the end-to-end prototype

FOS Prototyping

August 1995 PRR

- Objective
 - Perform studies and analyses to drive out the FOS detailed design
 - Solve specific design issues through proof-of-concept prototypes
- Results
 - Selected a series of COTS for the FOS (e.g., SyBase, XRT graphs, IMSL)
 - Each subsystem solved a series of specific prototyping objectives (e.g., Planning and Scheduling refined Data Distributor architecture)

FOS Detailed Design Process

FOS Detailed Design Process

Walkthrough Materials:
Operations Scenario flow chart
Operations Scenario description

Walkthrough Materials: Subsystem component

- context diagram
- description
- object model
- dynamic model
- data dictionary

Walkthrough Materials: Segment Design model (event trace) Segment Design description

FOS Detailed Design Walkthroughs

FOS Detailed Design Metrics

QA Walkthrough Metrics:

- QA maintained metrics on each FOS walkthrough
- Metrics identified issues and inconsistencies
- All issues and inconsistencies were corrected prior to the delivery of the FOS Design Specification Errors Id and Corrected

Design Components: 160

Examples: Decom, String Mgr,

Analysis Request

Internal I/F Components: 380

Example: Analysis/FUI i/f

External I/F Components: 60

Example: EDOS, NCC, FDF

FOS Detailed Design Products

FOS Developers

ECS System Engineering

ECS Flight Operations Team

FOS Integration and Test

FOS Engineering Traceability

Document and Delivery Date

FOS Requirements Specification October 1995

FOS Design Specification October 1995

FOS I&T Plan October 1995

Requirements

Level 3 -> Level 4 Level 4 -> Level 3 IRD to Level 3 IRD to Level 4

I&T Plan

Level 3 -> Test Plan Level 4 -> Test Plan

Design Spec

Level 3 -> Object Level 4 -> Object

706-CD-002-001 Day 1

AM1-30